Nitrogen Loading from Coastal Watersheds to Receiving Estuaries: New Method and Application

نویسندگان

  • I. VALIELA
  • C. H. SHAM
چکیده

In this paper we develop a model to estimate nitrogen loading to watersheds and receiving waters, and then apply the model to gain insight about sources, losses, and transport of nitrogen in groundwater moving through a coastal watershed. The model is developed from data of the Waquoit Bay Land Margin Ecosystems Research project (WBLMER), and from syntheses of published information. The WBLMER nitrogen loading model first estimates inputs by atmospheric deposition, fertilizer use, and wastewater to surfaces of the major types of land use (natural vegetation, turf, agricultural land, residential areas, and impervious surfaces) within the landscape. Then, the model estimates losses of nitrogen in the various compartments of the watershed ecosystem. For atmospheric and fertilizer nitrogen, the model allows losses in vegetation and soils, in the vadose zone, and in the aquifer. For wastewater nitrogen, the model allows losses in septic systems and effluent plumes, and it adds further losses that occur during diffuse transport within aquifers. The calculation of losses is done separately for each major type of land cover, because the processes and loss rates involved differ for different tesserae of the land cover mosaic. If groundwater flows into a freshwater body, the model adds a loss of nitrogen for traversing the freshwater body and then subjects the surviving nitrogen to losses in the aquifer. The WBLMER model is developed for Waquoit Bay, but with inputs for local conditions it is applicable to other rural to suburban watersheds underlain by unconsolidated sandy sediments. Model calculations suggest that the atmosphere contributes 56%, fertilizer 14%, and wastewater 27% of the nitrogen delivered to the surface of the watershed of Waquoit Bay. Losses within the watershed amount to 89% of atmospheric nitrogen, 79% of fertilizer nitrogen, and 65% of wastewater nitrogen. The net result of inputs to the watershed surface and losses within the watershed is that wastewater becomes the largest source (48%) of nitrogen loads to receiving estuaries, followed by atmospheric deposition (30%) and fertilizer use (15%). The nitrogen load to estuaries of Waquoit Bay is transported primarily through land parcels covered by residential areas (39%, mainly via wastewater), natural vegetation (21%, by atmospheric deposition), and turf (16%, by atmospheric deposition and fertilizers). Other land covers were involved in lesser throughputs of nitrogen. The model results have implications for management of coastal landscapes and water quality. Most attention should be given to wastewater disposal within the watershed, particularly within 200 m of the shore. Rules regarding setbacks of septic system location relative to shore and nitrogen retention ability of septic systems, will be useful in control of wastewater nitrogen loading. Installation of multiple conventional leaching fields or septic systems in high-flow parcels could be one way to increase nitrogen retention. Control of fertilizer use can help to a modest degree, particularly for optional uses such as lawns situated near shore. Conservation of parcels of accreting natural vegetation should be given high priority, because these environments effectively intercept atmospheric deposition. Areas upgradient from freshwater bodies should be given low priority in plans to control nitrogen loading, because ponds intercept much of the nitrogen transported from upgradient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen sources to watersheds and estuaries: role of land cover mosaics and losses within watersheds.

Across most of the World's coastal zone there has been a geographic transition from naturally vegetated to human-altered land covers, both agricultural and urban. This transition has increased the nitrogen loads to coastal watersheds, and from watersheds to receiving estuaries. We modeled the nitrogen entering the watershed of Waquoit Bay, Massachusetts, and found that as the transition took pl...

متن کامل

Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae

In this paper, we explicitly link changes in community structure of estuarine primary producers to measured nitrogen loading rates from watersheds to estuaries, and quantify the relationship between nitrogen load, annual dynamics of algal growth and Zostera marina L. productivity, and overall eelgrass decline at the watershed-estuarine scale in estuaries of Waquoit Bay, Massachusetts, USA. Subs...

متن کامل

Will Dam Removal Increase Nitrogen Flux to Estuaries?

To advance the science of dam removal, analyses of functions and benefits need to be linked to individual dam attributes and effects on downstream receiving waters. We examined 7550 dams in the New England (USA) region for possible tradeoffs associated with dam removal. Dam removal often generates improvements for safety or migratory fish passage but might increase nitrogen (N) flux and eutroph...

متن کامل

The ecological effects of urbanization of coastal watersheds: historical increases in nitrogen loads and eutrophication of Waquoit Bay estuaries

Historical changes in land use on coastal watersheds have increased rates of land-derived nitrogen loading to estuaries and altered their biogeochemistry and food webs. We used information on human populations and land uses within the watershed of Waquoit Bay, Cape Cod, Massachusetts, U.S.A., to model how nitrogen loads derived from atmospheric deposition, fertilizer use, and wastewater disposa...

متن کامل

Nitrogen Loads to Estuaries: Using Loading Models to Assess the Effectiveness of Management Options to Restore Estuarine Water Quality

Nitrogen (N) loading to estuaries has become a major concern for coastal planners. As urban development on coastal watershed continues, estuaries and bays are becoming more eutrophic, and cascading effects are being felt at every trophic level. Managers and stakeholders need to have a suite of effective management tools that can be applied to coastal watersheds to minimize the effects of eutrop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999